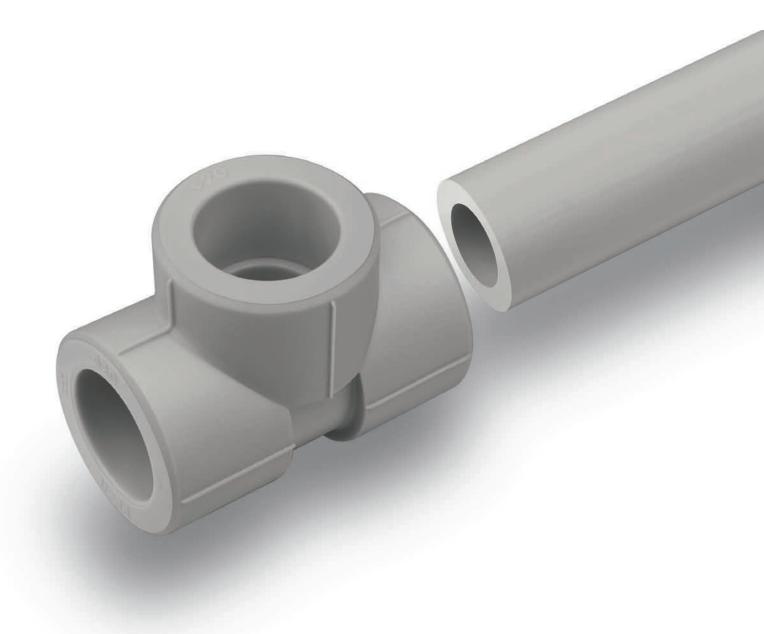

Ø **16–110** mm

SYSTÈME **KAN-therm**

PP

Haute qualité à prix raisonnable


LA TECHNOLOGIE DU SUCCÈS

Sommaire

3 Système **KAN-therm** PP

Matériau	94
Installations de distribution d'eau	95
Tubes	95
Allongement thermique	98
Compensation des allongements	99
Choix des compensateurs du type "L", "Z" et "U"	100
Technique des assemblages	101
Règles du montage	103
Outils - Sécurité	104
Système KAN-therm PP - assortiment	105
Outils d'assemblage PP	114

3 Système KAN-therm PP

Le système KAN-therm est un système d'installation complet composé de tubes et de raccords en polypropylène PP-R (type 3).

Ce système est largement utilisé pour les installations intérieures dans la construction, notamment pour les installations de distribution d'eau.

Les éléments de ce système sont assemblés par le soudage bout à bout (polyfusion thermique) avec les soudeuses électriques. Grâce à un assemblage homogène, cette technique de soudage garantit une étanchéité et une résistance mécanique particulières de l'installation.

Matériau

Le pastique utilisé pour fabriquer les tubes et les raccords du Système KAN-therm est un copolymère statique de qualité du polypropylène PP-R (ang. Random copolimer) identifié en tant que type 3.

Il est caractérisé par une série des avantages :

- un niveau hygiénique des produits élevé (neutralité microbiologique et physiologique),
- une résistance chmlique élevée,
- une résistance à la corrosion des matériaux,
- une conductibilité thermique peu élevée (isolation thermique des tubes),
- un poids volumique peu élevé,
- une résistance à l'entartrage,
- atténuation des vibrations et du bruit dus au flux,
- une résistance mécanique,
- des assemblages homogènes,
- une longue durée de vie,

Champ d'application

Vu les caractéristiques du matériau, le système d'installation KAN-therm PP présente plusieurs applications possibles :

- installations d'eau froide (20 °C/10 bar) et chaude (60 °C/10 bar) dans les bâtiments habitables, les hôpitaux, les hôtels, les bureaux, les écoles,
- installations de chauffage central (temp. jusqu'à 90 °C pression de service jusqu'à 0,6 MPa),
- installations d'air comprimé,
- installations balnéologiques,
- installations pour l'agriculture et l'horticulture,
- canalisations pour l'industrie, p.ex. pour transporter les fluides agressifs et les produits alimentaires.
- __ installations de bateaux.

Ce champ comprend de nouvelles installations aussi bien que les réparations, les modernisations et les remplacements.

Installations de distribution d'eau

Vu les caractéristiques spécifiques du polypropylène PP-R (la neutralité physiologique et microbiologique, la résistance à la corrosion, à l'entartrage, l'absence de sensibilité aux vibrations, l'isolation thermique des tubes élevée), les installation du Système KAN-therm sont largement utilisées, notamment pour les installations de distribution d'eau surtout pour les niveaux et les colonnes des installations. C'est le cas de l'installation d'eau froide et chaude dans les bâtiments habitables, les hôpitaux, les bureaux, les écoles, au bord des bateaux etc. Les installations du système KAN-therm PP sont irremplaçables pour les rénovations de vieilles installations de distribution d'eau corrodées.

Une technique spécifique de l'assemblage, polyfusion thermique, soit le soudage, assure une parfaite étanchéité et une longue durée de vie de l'installation.

Éléments du système

Le Système KAN-therm PP comprend les éléments suivants :

- tubes PP-R empilés, homogènes et composites,
- __ raccords (homogènes) en PP-R,
- raccords de transition avec un filetage métallique (avec des incorporations),
- douilles pour les assemblages bridés, assemblages vissés,
- compensateurs à boucle, plaques de montage, vannes sphériques d'arrêt et en champignon,
- ___ éléments de fixation,
- outils de découpage, d'usinage et de soudage.

Tubes

Types de tube

Le Système KAN-therm offre un choix de sept types de tubes qui se distinguent par l'épaisseur des parois et par la construction (tubes composites) :

- ___ tubes homogènes PN 10 (20 -110 mm),
- tubes homogènes PN 16 (20 –110 mm),
- __ tubes homogènes PN 20 (26 -110 mm),
- ___ tubes composites PN 16 Stabi AI (20 -75 mm),
- tubes composites PN 20 Stabi AI (16 –110 mm),
- __ tubes composites PN16 Glass (20-110 mm).
- __ tubes composites PN20 Glass (20-110 mm).

Classification selon les dimensions (séries) et la pression des tubes PP-R

s	SDR	PN
5	11	10
3,2	7,4	16
2,5	6	20

$$S = (D-s)/2s$$

$$SDR = 2 \times S + 1 = D/s$$

S – série des dimensions d'un tube selon la ISO 4065

SDR – (ang. Standard Dimension Ratio) série des dimensions d'un tube)

D - diamètre extérieur nominal d'un tube

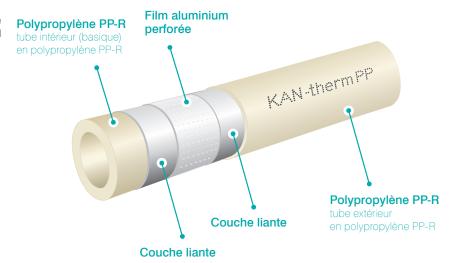
s – épaisseur nominal de la paroi

PN – série des pressions applicables aux tubes

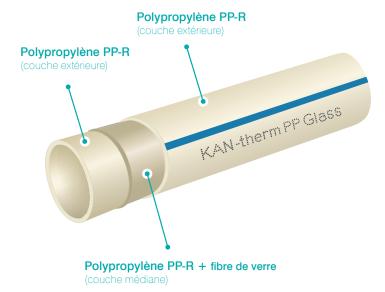
	Tubes PN10 (S5/SDR11)												
Dimension	Diamètre ext. D	Épaisseur de la paroi s	Diamètre int. d	Cap. unit.	Poids unit.								
[mm]	[mm]	[mm]	[mm]	[l/m]	[kg/m]	- Tubes homogènes, à minces parois,							
20 × 1,9	20	1,9	16,2	0,206	0,107	pour l'eau froide.							
25 × 2,3	25	2,3	20,4	0,327	0,164	Gamme des diamètres de 20×1,9							
32 × 2,9	32	2,9	26,2	0,531	0,267	- à 110×10,0 mm. - Trouvent un emploi dans les							
40 × 3,7	40	3,7	32,6	0,834	0,412	installations suivantes :							
50 × 4,6	50	4,6	40,8	1,307	0,638	eau froide sanitaire pression de service de 10 bars et température							
63 × 5,8	63	5,8	51,4	2,075	1,010	de base de 20°C.							
75 × 6,8	75	6,8	61,4	2,941	1,420	Tubes empilés 4 m.							
90 × 8,2	90	8,2	73,6	4,254	2,030	-							
110 × 10,0	110	10,0	90,0	6,362	3,010	-							

			Tubes PN	16 (S3,2/SDR7	,4)	
Dimension	Diamètre ext. D	Épaisseur de la paroi s	Diamètre int. d	Cap. unit.	Poids unit.	
[mm]	[mm]	[mm]	[mm]	[l/m]	[kg/m]	-
20 × 2,8	20	2,8	14,4	0,163	0,148	Tubes homogènes
25 × 3,5	25	3,5	18,0	0,254	0,230	 Gammes des diamètres de 20×2,8 mm à 110×15,1 mm
32 × 4,4	32	4,4	23,2	0,415	0,370	Trouvent un emploi dans les
40 × 5,5	40	5,5	29,0	0,615	0,575	installations suivantes : - eau chaude et froide sanitaire
50 × 6,9	50	6,9	36,2	1,029	0,896	pression de service de 8 bars et
63 × 8,6	63	8,6	45,8	1,633	1,410	température de base de 60°C.
75 × 10,3	75	10,3	54,4	2,307	2,010	Tubes empilés 4 m.
90 × 12,3	90	12,3	65,4	3,358	2,870	-
110 × 15,1	110	15,1	79,8	4,999	4,300	-

			Tubes PN	20 (S2,5/SDR6	5)	
Dimension	Diamètre ext. D	Épaisseur de la paroi s	Diamètre int. d	Cap. unit.	Poids unit.	
[mm]	[mm]	[mm]	[mm]	[l/m]	[kg/m]	Tubes homogènes, à parois
16 × 2,7	16	2,7	10,6	0,088	0,110	épaisses, universels.
20 × 3,4	20	3,4	13,2	0,137	0,172	- Gamme des diamètres de 16×2,7 à 110×18,3 mm.
25 × 4,2	25	4,2	16,6	0,216	0,266	Trouvent un emploi dans les installations suivantes :
32 × 5,4	32	5,4	21,2	0,353	0,434	eau chaude et froide sanitaire
40 × 6,7	40	6,7	26,6	0,556	0,671	pression de service de 10 bars
50 × 8,3	50	8,3	33,4	0,866	1,050	et température de base jusqu'à 60°C ainsi que dans les installations de
63 × 10,5	63	10,5	42,0	1,385	1,650	chauffage - (6 bars/80 °C, T _{may} =90 °C).
75 × 12,5	75	12,5	50,0	1,963	2,340	Tubes empilés 4 m.
90 × 15,0	90	15,0	60,0	2,827	3,360	· -
110 × 18,3	110	18,3	73,4	4,208	5,040	-


	Tubes PN 16 Stabi Al											
Dimension	Diamètre ext. D	Épaisseur de la paroi s	Diamètre int. d	Cap. unit.	Poids unit.	Tubes composites, stabilisés avec du film alu.						
[mm]	[mm]	[mm]	[mm]	[l/m]	[kg/m]	Gamme des diamètres de 20×2,8 à 75×10,3 mm.						
20×2,8	20 (21,7)*	2,8	14,4	0,163	0,194	Trouvent un emploi dans les						
25×3,5	25 (26,7)*	3,5	18	0,254	0,292	installations suivantes :						
32×4,4	32 (33,7)*	4,4	23,2	0,415	0,462	eau chaude et froide sanitaire pression de service de 10 bars						
40×5,5	40 (41,6)*	5,5	29	0,615	0,682	et température de base jusqu'à 60°C ainsi que dans les installations de						
50×6,9	50 (51,6)*	6,9	36,2	1,029	1,003	chauffage						
63×8,6	63 (64,5)*	8,6	45,8	1,633	1,540	(6 bars/80 °C, T _{max} =90 °C). Tubes empilés 4 m.						
75×10,3	75 (76,5)*	10,3	54,4	2,307	2,590	* entre parenthèses une mention du diamètre extérieur d'un tube avec le film Al et une couche de protection						

			Tubes F	PN 20 Stabi Al		
Dimension	Diamètre ext. D	Épaisseur de la paroi s	Diamètre int. d	Cap. unit.	Poids unit.	
[mm]	[mm]	[mm]	[mm]	[l/m]	[kg/m]	Tubes composites, stabilisés avec
16 × 2,7	16 (17,8)*	2,7	10,6	0,088	0,160	du film alu.
20 × 3,4	20 (21,8)*	3,4	13,2	0,137	0,218	Gamme des diamètres de 16×2,7 à 110×18,3 mm.
25 × 4,2	25 (26,9)*	4,2	16,6	0,216	0,328	Trouvent un emploi dans les installations suivantes : eau chaude
32 × 5,4	32 (33,9)*	5,4	21,2	0,353	0,520	sanitaire pression de service de 10 bars et température de base
40 × 6,7	40 (41,9)*	6,7	26,6	0,556	0,770	jusqu'à 60°C ainsi que dans les installations de chauffage (6 bars/80
50 × 8,3	50 (51,9)*	8,3	33,4	0,866	1,159	°C, T _{max} =90 °C).
63 × 10,5	63 (64,9)*	10,5	42,0	1,385	1,770	Tubes empilés 4 m. * entre parenthèses une mention du
75 × 12,5	75 (76,9)*	12,5	50,0	1,963	2,780	diamètre extérieur d'un tube avec le film Al et une couche de protection
90 × 15,0	90 (92)*	15,0	60,0	2,830	3,590	
110 × 18,3	110 (112)*	18,3	73,4	4,210	5,340	-


			Tubes	PN 16 Glass						
Dimension	Diamètre ext. D	Épaisseur de la paroi s	Diamètre int. d	Cap. unit.	Poids unit.					
[mm]	[mm]	[mm]	[mm]	[l/m]	[kg/m]					
20 × 2,8	20	2,8	14,4	0,163	0,160	Tubes composites, stabilisés avec de la fibre de verre.				
25 × 3,5	25	3,5	18,0	0,254	0,250	- Gamme des diamètres de 20×2 - à 110×15,1 mm.				
32 × 4,4	32	4,4	23,2	0,415	0,430	Trouvent un emploi dans les				
40 × 5,5	40	5,5	29,0	0,615	0,650	installations suivantes : eau chaude sanitaire pression de service de				
50 × 6,9	50	6,9	36,2	1,029	1,000	 10 bars et température de base jusqu'à 60°C ainsi que dans 				
63 × 8,6	63	8,6	45,8	1,633	1,520	les installations de chauffage (6 bars/80 °C, T _{max} =90 °C).				
75 × 10,3	75	10,3	54,4	2,307	2,200	Tubes empilés 4 m.				
90 × 12,3	90	12,3	65,4	3,358	3,110	-				
110 × 15,1	110	15,1	79,8	4,999	4,610	-				

Dimension	Diamètre ext. D	Épaisseur de la paroi s	Diamètre int. d	Cap. unit.	Poids unit.					
[mm]	[mm]	[mm]	[mm]	[l/m]	[kg/m]					
20 × 3,4	20	3,4	13,2	0,137	0,180	Tubes composites, stabilisés avec de la fibre de verre.				
25 × 4,2	25	4,2	16,6	0,216	0,290	Gamme des diamètres de 20×3 à 110×18,3 mm.				
32 × 5,4	32	5,4	21,2	0,353	0,460	Trouvent un emploi dans les				
40 × 6,7	40	6,7	26,6	0,556	0,680	 installations suivantes : eau chaude et froide sanitaire pression de 				
50 × 8,3	50	8,3	33,4	0,866	1,000	service de 10 bars et température de base jusqu'à 60 °C et dans				
63 × 10,5	63	10,5	42,0	1,385	1,550	les installations de chauffage (6 bars/80 °C, T _{max} =90 °C).				
75 × 12,5	75	12,5	50,0	1,963	2,340	Tubes empilés 4 m.				
90 × 15,0	90	15,0	60,0	2,827	3,360	-				
110 × 18,3	110	18,3	73,4	4,208	4,900	-				

Construction d'un tube composite KAN-therm PP Stabi Al

Construction d'un tube composite KAN-therm PP Glass

Allongement thermique

En cas de différence des températures ΔT , chaque conduite subit un allongement (ou raccourcissement) de ΔL . Cette grandeur est définie par la formule suivante :

$$\Delta L = \alpha \times L \times \Delta T$$

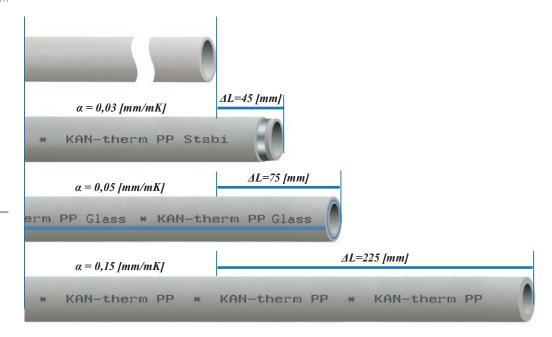
où:

α – coefficient de l'allongement thermique linéaire [mm/mK]

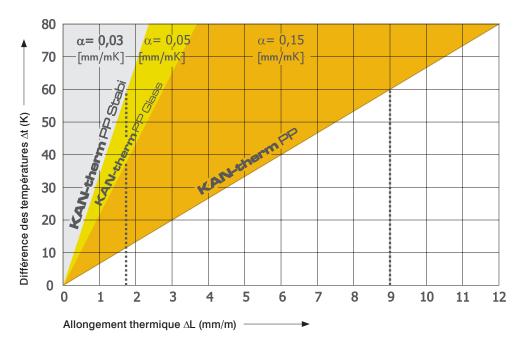
0,15 [mm/mK] – tubes PP homogènes

0,05 [mm/mK] - tubes PP Glass

0,03 [mm/mK] - tubes PP Stabi


L – longueur d'un fragment de la conduite [m]

△T – différence des températures pendant l'installation et l'exploitation [K]


Exemple:

Allongement d'un fragement de 25 m du tube homogène KAN-therm PP Stabi, KAN-therm PP Glass, KAN-therm PP pour une différence des températures de 60 °C.

- tube KAN-therm PP Stabi $\Delta L = 0.03 \times 25 \times 60 = 45$ [mm]
- tube KAN-therm PP Glass $\Delta L = 0.05 \times 25 \times 60 = 75$ [mm]
- tube KAN-therm PP homogène $\Delta L = 0.15 \times 25 \times 60 = 225$ [mm]

Comparaison de l'allongement thermique des tubes KAN-therm PP homogènes et composites Stabi Al et Glass

Compensation des allongements

Pour éliminer les effets des allongements linéaires (les mouvements non contrôlés des conduites et leur déformation), les différentes constructions pour les solutions compensatrices sont mises en place (bras flexible et compensateurs en U et en Z).

$$Ls = K \times \sqrt{Dz \times \Delta L}$$

où:

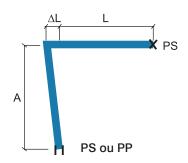
 ${\it Ls}$ – longueur d'un bras flexible [mm]

K – constante matériau adimensionnée = 20

Dz – diamètre extérieur d'un tube [mm]

△L – allongement d'un fragement de la conduite [mm]

Choix des compensateurs du type "L", "Z" et "U"


Tab. 1 Longueur du bras de compensation A exigée [mm] pour KAN-therm PP

				Diamèt	re extérieu	r d'un tube	d [mm]			
Valeur										
allong. ΔL [mm]	16	20	25	32	40	50	63	75	90	110
	Longueur du bras flexible A exigée [mm]									
2	113	126	141	160	179	200	225	245	268	297
4	160	179	200	226	253	283	318	346	380	420
6	196	219	145	277	310	346	389	424	465	514
8	226	253	283	320	358	400	449	490	537	593
10	253	283	316	358	400	447	502	548	600	663
12	277	310	346	392	438	490	550	600	657	727
14	299	335	374	423	473	529	594	648	710	785
16	320	358	400	453	506	566	635	693	759	839
18	339	379	424	480	537	600	674	735	805	890
20	358	400	447	506	566	632	710	775	849	938
22	375	420	469	531	593	663	745	812	890	984
24	392	438	490	554	620	693	778	849	927	1028
26	408	456	510	577	645	721	809	883	968	1070
28	423	473	529	599	669	748	840	917	1004	1110
30	438	490	548	620	693	775	869	949	1039	1149
32	453	506	566	640	716	800	898	980	1073	1187
34	466	522	583	660	738	825	926	1010	1106	1223

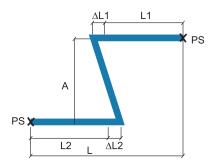
Le tab. 1 présente la longueur du bras de compensation A exigée pour les différentes valeurs de l'allongement ΔL et du diamètre extérieur d'un tube d_z .

Règles du choix des compensateurs des différents types sont listées ci-après :

Compensateur en L

A - longueur d'un bras flexible

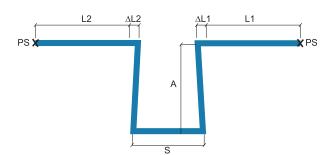
 ${\it SM}$ – support mobile (mouvement possible uniquement le long de l'axe du tube)


PF – point fixe (rend impossible tout déplacement d'une conduite)

L - longueur initiale d'une conduite

 \emph{AL} – allongement d'une conduite

Pour dimensionner un bras de compensation A, prendre en compte la longueur de remplacement L_z =L et pour cette longueur déterminer la valeur de l'allongement ΔL selon la formule, et ensuite la longueur du bras de compensation A selon le Tab. 1.


Compensateur en Z

- A longueur d'un bras flexible
- PF point fixe (rend impossible tout déplacement d'une conduite)
- L longueur initiale d'une conduite
- 11 allongement d'une conduite

Pour dimensionner le bras de compensation, utiliser comme longueur de remplacement L_z la somme L1 et L2: L_z =L1+L2 et pour cette longueur déterminer l'allongement de remplacement ΔL selon la formule, et ensuite la longueur du bras de compensation ΔL selon le Tab. 1.

Compensateur en U

- A longueur d'un bras flexible
- **PF** point fixe (rend impossible tout déplacement d'une conduite)
- L longueur initiale d'une conduite
- △L allongement d'une conduite
- S largeur du compensateur en U

Lorsqu'un point fixe PS est placé sur un fragment qui est largeur du compensateur S, pour dimensionner le bras de compensation A, prendre comme longueur de remplacement Lz la valeur plus grande de L1 et L2: Lz=max (L1, L2) et pour cette longueur déterminer l'allongement de remplacement ΔL selon la formule, et ensuite la longueur du bras de compensation A selon le Tab. 1.

La largeur du compensateur S est calculée en application de la dépendance suivante : S = A/2.

Technique des assemblages

Découper les tubes avec un coupe-tube
 Enlever le film aluminium avec une râpe (ce n'est que le cas des tubes composites Stabi).

- 3. Définir la profondeur de soudage
 4. Chauffage du tube et du raccord.
 Paramètres :
 - profondeur de soudage,
 - temps de chauffage.

5. Assembler les éléments.
Paramètres:
- temps d'assemblage.
6. Maintenir et refroidir l'assemblage.
Paramètres:
- temps de refroidissement.

• ATTENTION!

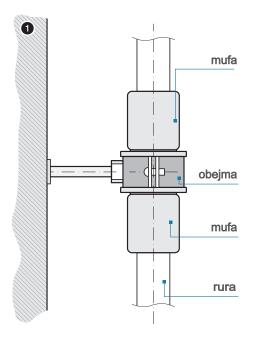
Pour un assemblage étanche et résistant d'un tube et d'un raccord du Système KANtherm PP, il est recommandé d'utiliser des disques chauffants de l'offre du Système KAN-therm PP.

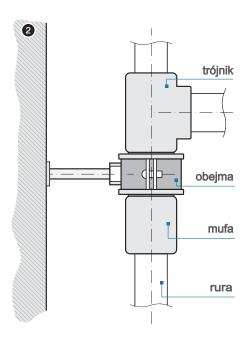
	Paramètres du soudage										
Diamètre ext. d'un tube	Profondeur de soudage			Temps de refroidis- sement							
[mm]	[mm]	[s]	[s]	[min]							
16	13,0	5	4	2							
20	14,0	5	4	2							
25	15,0	7	4	2							
32	16,0	8	6	4							
40	18,0	12	6	4							
50	20,0	18	6	4							
63	24,0	24	8	6							
75	26,0	30	10	8							
90	29,0	40	10	8							
110	32,5	50	10	8							

Le temps de chauffage des tubes minces (PN 10) est réduit d'une moitié (temps de chauffage des raccords reste inchangé). Le temps de chauffage pour les températures extérieures inférieures à + 5C doit être augmenté de 50%.

Étanchéité du filetage

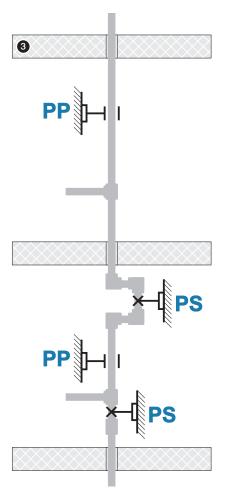
Pour les assemblages filetés, il est recommandé d'utiliser de l'étoupe en quantité qui permet de conserver visibles les points du filetage. Une quantité trop importante d'étoupe peut endommager le filetage. Pour éviter un vissage en biais et un dommage du filetage, enrouler de l'étoupe juste après le premier filet.

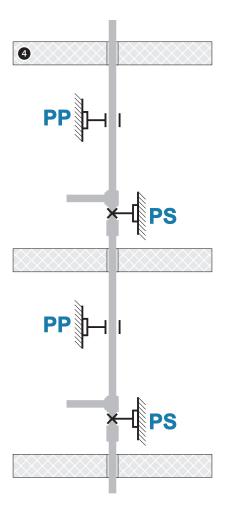

• ATTENTION!


Ne pas utiliser de produits chimiques d'étanchéité et de colles.

Règles du montage

Points fixes de l'installation – exemples des réalisations (fig. 1 et 2)





Exemples de l'acheminement des colonnes avec les installations de l'eau chaude en fonction du type des tubes (fig. 3 et 4)

3. Installation des tubes : Système KAN-therm PP PN16, PN20

4. Installation des tubes : Système KAN-therm PP Stabi et KAN-therm PP Glass : SM – support mobile, PF – point fixe

Distances maximales entre les supports des tubes du Système KAN-therm PP homogènes en fonction du diamètre et de la temp. du fluide. Pour les fragments verticaux des conduites, il est possible d'accroître l'écartement des supports d'env. 30%.

T I°Ol		Diamètre extérieur d'un tube D [mm]											
T [°C]	16	20	25	32	40	50	63	75	90	110			
Distances entre les fixations [mm]													
20	50	60	70	90	100	120	140	150	160	180			
30	50	60	70	90	100	120	140	150	160	180			
40	50	60	65	80	90	110	130	140	150	170			
50	50	60	65	80	90	110	130	140	150	170			
60	50	55	60	75	85	100	115	125	140	160			
70	50	50	60	70	80	95	105	115	125	140			

Distances maximales entre les supports des tubes du Système KAN-therm PP Stabi en fonction du diamètre et de la temp. du fluide. Pour les fragments verticaux des conduites, il est possible d'accroître l'écartement des supports d'env. 30%.

T [°C]	Diamètre d'un tube D [mm]										
	16	20	25	32	40	50	63	75	90	110	
Distances entre les fixations [mm]											
20	100	120	130	150	170	190	210	220	230	250	
30	100	120	130	150	170	190	210	220	230	240	
40	100	110	120	140	160	180	200	210	220	230	
50	100	110	120	140	160	180	200	210	220	210	
60	80	100	110	130	150	170	190	200	210	200	
70	70	90	100	120	140	160	180	190	200	200	

Distances maximales entre les supports des tubes du Système KAN-therm PP Glass en fonction du diamètre et de la temp. du fluide. Pour les fragments verticaux des conduites, il est possible d'accroître l'écartement des supports d'env. 30%.

T [°C]	Diamètre d'un tube D [mm]											
	20	25	32	40	50	63	75	90	110			
Distances entre les fixations [mm]												
0	120	140	160	180	205	230	245	260	290			
20	90	105	120	135	155	175	185	195	215			
30	90	105	120	135	155	175	185	195	210			
40	85	95	110	125	145	165	175	185	200			
50	85	95	110	125	145	165	175	185	190			
60	80	90	105	120	135	155	165	175	180			
70	70	80	95	110	130	145	155	165	170			

Outils - Sécurité

Utiliser tous les outils conformément à leur destination selon les notices d'emploi des fabricants. Un autre emploi est réputé être non conforme à leur destination. Pour un emploi conformément à la destination, il est également nécessaire de suivre les consignes des notices d'emploi, des conditions des révisions et de maintenance ainsi que des dispositions de sécurité en vigueur.

Tous les travaux réalisés avec cet outil non conformes à sa destination peuvent causer les dommages des outils, des accessoires et des tubes. Cela peut provoquer des fuites et/ou des dommages de l'assemblage du tube et du raccord.